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SUMMARY

In this paper we compare the results of Donato's exponentially varying ground model,

Attenborough's exponentially varying ground model and the rigid backed thin layer model. We

show that these models produce similar results for slow variations. For rapid variations the results

are quite different but the basic theory used is only correct for the thin layer model. These results

suggest that the exponentially varying models are not necessary for fitting ground impedance data.

INTRODUCTION

Donato proposed an exponentially varying ground model to be used for the interpretation of

ground impedance data. 1 Attenborough has demonstrated that the exponential variation chosen by

Donato results in model grounds with increasing porosity with depth and has derived a ground

model which has a decreasing porosity with depth. 2

In this paper we examine the behavior of both these models in the limit of large and small

variation and compare the results to the rigid backed layer model. 3 To facilitate this we have

reduced the solutions to their simplest forms and have employed Attenborough's low frequency/high

flow resistivity results for numerical comparison.

I. GROUND MODELS

A. Rigid Backed Layer

A layer of porous material of thickness d overlying an acoustically rigid surface has a surface

impedance of the form:

Z(O) = i Z c cot (kd)

where Z c is the impedance of a seminfinite half space of the porous material and k is the complex

wave number in the porous material.

(1)
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B. Donato'sExponentialModel

Donatohasderivedaimpedancemodelfor amaterialwhoseporositytimeswavenumber
decreasesexponentiallywith depth.Attenboroughhasdemonstratedthatfor naturalgroundsthis
impliesthattheporosityincreasesexponentiallywithdepthandthewavenumberdecreases
exponentiallywith depth.Thiswill notcommonlyoccurin naturalgroundsurfacesbut maybea
usefulmodelinsomecases.With thenotationaboveDonato'sformulabecomes

J0(2k/t_) .

Z(0) = i Z c Jl(2k/0t) '

t_ is the exponential varation of the square of the complex wave number

k(z) 2 = k(0)2e -az.

C. Attenborough's Exponential Model

Attenborough's solution for a porous material whose porosity decreases exponentially with

depth and wave number increases exponentially with depth is given by

H(2)(2k/o0

Z(0) = i Z¢ H_2)(2k/o0 ;

where

(2)

(3)

(4)

k(z) 2 = k(0)2e az.

II. BEHAVIOR OF THE IMPEDANCE AND WAVE NUMBER

(5)

It will be useful in the interpretation of these models to have a specific formulae for the wave

number and impedance of a homogeneous porous material. For this paper we will use

Attenborough's low frequency approximation:

Zc =--K¢--- =.218(_)u2 (1 + i).
7f2c0

(6)

_e is the effective flow resistivity of the material, 7 is the ratio of specific heats and c is the speed of

sound in air. 2
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UI. BEHAVIOR OF THE GROUND MODELS IN THE LIMIT OF LARGE AND

SMALL ARGUMENTS

A. Rigid Backed Layer

i) Limit as d --> 0.

For a thin layer d ---->0 and Eq. (1) becomes

Z(0) = lim i 7__¢cot(kd) = i k_d - i Zekd (7)d--->0 3

If we use Eq. (6) to relate Z c and k for low frequency we find

Z(0) 4n('218)2 %'2dc_e 1- + i -- (8)
3c _/fLkod

where k 0 is c0/c. Note that the imaginary term approaches infinity as kod goes to zero, while the

real part depends only on the layer thickness and the surface flow resistance. This form is

displayed by Attenborough. 2

ii) Limit as d --->oo

As d --4 oo the model should recover the result for the homogeneous half space. The

cotangent can be expanded in terms of the exponents of the real and imaginary parts of kd.

lim cot(kd)= ]Lrn = eik_de-k2d+ e-ik_de+k2d / eik_de-k2d_ e-ik_dek2d
d---_oo d--_oo 2 2i (9)

where

k=k I +ik 2.

k 2 must be positive so that

Z(0) = i Z c (- i) = Z c,

and the original condition is recovered.

(10)
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B. Donato'sExponentialModel

i) Limit asocbecomessmall

As ocbecomessmallthemediumapproachesahomogeneousmedia.If we takethelimit of

Eq. (2) for smallocandlarge2k/ocwe find

Z(0) = i Zc
7t_---2_c°s (_ -_2 _4 )

=iz cot( 4 "
(11)

This is like the impedance of a thin layer of thickness 2/oc with an additional -re/4 phase

change. The next correction term is of order _2k. A pressure release backed thin

layer would have a phase change of -re/2. As oc --->0, the cotangent term will approach -i as in

Section A-ii) and Z(0) = Z c as expected.

ii) Limit as oc --> oo

In the limit as oc --->oo, the argument becomes small and the ascending series may be used to

evaluate the Bessel functions.

Z(0)=iZ c_-i Zck_ 2oc
oc

(12)

The behavior of this solution is very similar to Eq. 7. We have a rapidly increasing imaginary

part and a constant real part as the frequency decreases for fixed d and c_e. The imaginary parts are

identical if the rigid backed layer has a thickness 1/oc, while the real parts are equal if the rigid

backed layer thickness is given by 1.5/_.

C. Attenborough's Exponential Model

i) Limit as 0c _ 0

The asymptotic expansions can be employed for the Hankel functions giving

_f_k e-i(2k/et - _/4)

Z(0) = i Z c = i Z c e -ird2 = Z c. (13)
e in- e-i(2k/c_ - n/4)
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ii)

The Attenborough model recovers the homogeneous half space surface impedance as 0_ --_ 0.

Limit as ct _ o.

The small argument formulae for the Hankel functions are inserted in Eq. (4) to give

where e = .5772.

Z(0)=Zc[( -ie)2ki2k (14)

This result is not easily interpreted in terms of a layered model. The behavior of this solution

is best illuslrated by use of Eq. (6) to yield

Z(0) = 5.923 In k + 3.419 + i 13.955 (15)

As ct --> oo the impedance of the Attenborough model has a large negative real part tending to - oo

and a constant imaginary part. This puzzling result indicates that the surface is not absorbing

energy and has a reflection coefficient greater than one! In a gross sense the behavior is physical.

The reflection coefficient approaches one as the impedance becomes inf'mitc. The only problem is

that the surface cannot be generating acoustic energy.

iii) Limit for 2k/ct > 1, o_not infinite

A third limit is developed by Attenborough as useful for computation and comparison with

data. This form is developed for ct small enough that the leading term in asymptotic series for the

Hankel functions may be used. For 2k/0¢ > 1

H(02)(2k/ct) (1 +i0_

= 82k/ _=_i{1 +_k }
H_2,C2k/a) -i (1-_3_k )

and

(16)

Z(O) = Zc{ 1 +_- }

Using Eq. (6) to relate k and Z c gives us

z(0) = z c+ ic
4T _ in]

(17)

(18)
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Defining o_e= (xJf_andinsertingnumericalvaluesfrom Eq. (6)givesusAttenborough'sform:

(__e)l/2 [ (_.e) 1/2 (__e)]Z(0) = .218 + i .218 + 9.74 (19)

The next terms in the asymptotic series are on the order of 7% of the last term in Eq. (19) when the

argument of the Hankel function is one.

Note that we can recover Eq. (13) by letting o_ approach zero. Also note that the second term

in Eq. (17) is very similar to the form for the imaginary part of the impedance of a thin rigid backed

layer. Compare

i Z c _kk and ikdZC (20)

The second term in Eq. (17) is the imaginary part of the impedance of a thin layer of effective

thickness d e = 4/0t. The imaginary parts dominate the impedance for large o_.

IV. NUMERICAL RESULTS

To calculate numerical values for the three impedance models we set

kd = 2k/o_ = x(1 + i).

Then, using Eq. (6), we solve for f and Z c in terms of x:

and

f=[. _xc ]21,[4w_O (.218) (Ye

(21)

(22)

4rr_(.218)2(Ie
Z c - (1 + i). (23)

(Zxc

We use the following typical values of y, f_, _e, and ot based on our experience and that of

Attenborough:

y= 1.4

f_ = 0.4

c_e = 120,000 MKS rayls

= 40. m-l; d = 5 cm.

Then, we calculate impedances using Eqs. (1), (2) and (4) for x = 0 to 5. The results are plotted in

46



Fig. 1(rigid backedlayer),Fig. 2 (Donato'sformula), andFig. 3 (Attenborough'ssolution). The
imaginarypartsof theimpedancearemultipliedby - 1 so the plots of the real part are usually on the

positive side of the vertical axis and the imaginary parts are on the negative side. The plots are

nearly identical for values of x greater than one. For the variables above, x = 1.0 corresponds to
654 Hz.

Figure 4 displays the normal reflection coefficient calculated from Eqs. (1,2, and 4). The

behavior is similar for all the models. Better agreement can be achieved between any two models

by the choice of the equivalent depth of the exponential variation.

V. DISCUSSIONS AND CONCLUSIONS

The surface impedance predicted by each of the three models above approaches the

homogeneous half-space impedance as the variation of wave number becomes small or the layer

depth becomes large in the rigid backed model.

As the exponential variations become larger the impedance formula can be approximated as a

constant or slowly varying real and imaginary part plus an imaginary term which is proportional to

0_/o or 1/c0d.

For very rapid variations, the expansion of Attenborough's solution results in a non-physical

solution (Eq. 13).

The basic assumption in the derivation of Eq. (6) and it's more exact analogues, is that the

gradients of the variables with respect to the propagation direction are much smaller than gradients

of the variables normal to the direction of propagation. 4 The result that the reflection coefficient is

greater than one for small variable x is probably due to the error in Eq. (6) rather than any physical

error in the theory leading to Eq. (4).

By the same reasoning, Donato's formula should be inaccurate for small values of the variable

x. There is no physical problem with the thin rigid backed layer since the porous layer is

homogeneous and Eq. (6) should hold. For the variables we have chosen, there appears to be little

practical reason to employ the exponential models to fit ground data, while there appears to be a

significant theoretical reason for not using the exponential models in the region where they vary

significantly from the rigid backed layer.

At very low frequencies, the impedance translation theorem can be employed to calculate the

impedance of an impedance backed layer. This model has sufficient flexibility to fit most data

without the theoretical difficulties of the Donato or Attenborough models.
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The real and imaginary part of the ground impedance versus the parameter x for the

thin rigid backed layer. The imaginary part is multiplied by negative one for

display purposes.
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The real and imaginary parts of the ground impedance versus the parameter x for

Donato's exponentially varying model.
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Figure 3.
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The real and imaginary parts of the ground impedance versus the parameter x for

Attenborough's exponentially varying model.

Figure 4.
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The absolute value of the reflection factor for normal reflection for the three

models versus the parameter x---thin layer, ..... Donato,----Attenborough.)
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